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A B S T R A C T

The collaborative operation of multi-underwater robot formation is an effective way to deal with the complex 
underwater environment. A formation control strategy with high efficiency and accuracy in moving obstacle 
avoidance is very important. Based on the multi-robot experiment platform, a moving obstacle avoidance- 
constrained adaptive model predictive control (MOAC-AMPC) strategy is proposed for Underwater Spherical 
Robots (USRs). The strategy is optimized in two main aspects: Firstly, based on model predictive control, an 
adaptive weight matrix based on tracking error is designed to solve the tedious parameter tuning problem and 
reduce the tracking time. Then, the Velocity Obstacle (VO)-based dynamic constraints are designed to avoid 
multiple moving obstacles. Finally, the multi-underwater spherical robots experiment platform is built. Pool 
experiments are set up on the platform to verify the multi-robot formation with obstacles avoidance. The 
feasibility and superiority of the proposed strategy are verified by simulations and experiments. The application 
of the proposed multi-USRs strategy has certain practical value in multi-robot trajectory tracking and obstacle 
avoidance.

1. Introduction

In recent years, the research of multiple underwater robots has 
attracted more attention (Yin et al., 2022; Han et al., 2022; Liu et al., 
2021). The robot formation composed of multiple underwater robots has 
robustness and may effectively perform large-scale search and explora
tion tasks, such as underwater rescue, resource exploration, underwater 
equipment repair and so on (Peng et al., 2024; Li and Guo, 2023; Yin 
et al., 2023). The control methods applied to formation are the core part 
of multi-robot systems (Fu et al., 2020; Pan et al., 2022). Leader-follower 
method is widely used in formation and its control (Heshmati-Alamdari 
et al., 2021). The leader follows its desired trajectory. The follower 
maintains a predefined geometric relationship with the leader. How
ever, failure of the leader may lead to failure of formation maintenance. 
The tracking errors of the followers accumulate with the increase of the 
tracking distances. The behavior-based method (Wen et al., 2023) uses 
weights to combine various patterns of formation behavior such as 
forming formation, achieving rendezvous, avoiding obstacles, etc. As the 
permission of some conflicting behaviors, the behavior-based method 

cannot ensure convergence with theoretical analysis. The virtual struc
ture method uses a reference point as a leader. The desired trajectory 
points of all formation members are determined by the reference point 
(Zhen et al., 2022). However, the real-time virtual structure method of 
path planning is not flexible to the collision avoidance of moving ob
stacles. When one robot encounters an obstacle, the path of the other 
robots is affected. Many studies have further promoted the improvement 
of formation performance. Zhao et al. proposed a switching dynamic 
event-triggered prescribed performance formation control algorithm to 
satisfy the high-precision formation control task (Zhao et al., 2024). 
However, the balance between flexibility and reliability still needs to be 
further explored in the research of underwater robot formation.

The formation trajectory tracking is a basic problem of multi- 
underwater robot systems. The formation trajectory tracking needs to 
consider time to ensure that each member reaches the local target point 
at the corresponding time. Algorithms commonly used to control un
derwater robots for trajectory tracking include Active Disturbance 
Rejection Control (ADRC) (Tang et al., 2021), Proportional Integral 
Derivative (PID) Control (Shi et al., 2020) and backstepping (Peng et al., 
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2022). Constraints of the actual environment in robot control need to be 
considered, such as actuator saturation or the safe distance to obstacles. 
Considering these constraint conditions, the above control algorithms 
may not achieve the optimal control performance. In contrast, Model 
Predictive Control (MPC) simultaneously handles system constraints 
and achieves optimal control performance (Li et al., 2022a). Many re
searchers have used MPC to solve the formation trajectory tracking 
problem (Wei et al., 2021; Erskine et al., 2021). Wang et al. designed an 
adaptive MPC method based on Laguerre function. The recursive least 
squares algorithm was introduced to identify the model parameters of 
the system, to realize adaptive MPC (Wang et al., 2022). Wang et al. 
proposed an MPC method based on the lateral motion compensator and 
obtained the control output (Wang et al., 2023). However, many 
MPC-based algorithms did not have an off-line adjustment of weight 
matrix or real-time parameter identification, which limits their appli
cation in time-varying environments (Hou et al., 2024). Therefore, we 
expect to adjust the parameters of MPC adaptively to optimize the 
control process.

In the multi-underwater robot systems, obstacle avoidances must be 
considered to ensure the safety of formation members, that is, to avoid 
collision with other formation members and obstacles. Compared with 
static obstacles, obstacle avoidances for moving obstacles with 
randomness and uncertainty is more challenging and practical (Li et al., 
2022b; Li and Guo, 2022). Pang et al. designed a variable formation 
reconstruction and obstacle avoidance control scheme based on affine 
transformation and improved artificial potential field (Pang et al., 
2024). Meng et al. realized obstacle avoidances among underwater ve
hicles by adding a carefully designed artificial potential field cost term 
into the formation tracking cost function (Meng et al., 2023). In the 
above method, the relative speed was not taken into account, which 
cannot effectively avoid the obstacles (Hou et al., 2024; An et al., 
2022a). The Velocity Obstacle (VO) method is a local obstacle avoidance 
algorithm that considers both relative position and relative velocity (An 
et al., 2022b). Therefore, based on the velocity cone of the VO method 
between the robot and the obstacle, the safe velocity is calculated on the 
convex polygon. This property can be used for convex optimization 
problems of MPC.

Based on affine transform and the improved artificial potential field, 
Pang et al. proposed a formation reconfiguration scheme with obstacle 
avoidance (Pang et al., 2024). The method adjusts the formation ac
cording to the obstacles in real time, and makes tracking and obstacle 
avoidance actions. Zhen et al. developed an advanced formation control 
and obstacle avoidance strategy for autonomous underwater vehicles 

(AUVs) in SE(3) based on gyroscopic force, and verified this through 
simulations (Zhen et al., 2024). Ding et al. proposed an AUV formation 
obstacle avoidance method based on virtual structure and artificial po
tential field method which are verified by simulation (Ding et al., 2024). 
Although the above methods achieve formation obstacle avoidance, 
there are some aspects that need to be improved, such as the formation 
needs to be re-planned due to obstacles, the obstacle avoidance is not 
flexible, or the lack of relevant experiments and considering realistic 
constraints.

To perform the task of exploration in the shallow marine environ
ment with moving obstacles, a flexible formation tracking strategy with 
obstacle avoidance is necessary. To obtain the optimal performance of 
formation tracking under actuator constraints and avoid moving ob
stacles, a formation tracking strategy with adaptive MPC optimization is 
proposed in this paper. This strategy optimizes the control process of 
multi-robot formation trajectory tracking and obstacle avoidance, and is 
implemented in pool experiments. The main contributions of this paper 
are as follows: 

1) To solve the complicated parameter tuning problem in MPC and 
obtain a faster response to achieve flexible obstacle avoidance, an 
adaptive model predictive control (AMPC) strategy is established. 
The adaptive weight matrix is designed in the course of trajectory 
tracking. The trajectory tracking error is introduced to change the 
weight matrix adaptively.

2) The collision avoidance of moving obstacles and formation members 
is realized through the VO method and its application to the 
constraint design of MPC. The VO uses both relative position and 
relative speed to avoid obstacles more efficiently.

3) A formation control strategy combining global path planning and 
local obstacle avoidance is established. The global path planning 
based on virtual structure method can assign a reasonable global 
path with time information to each robot. Local tracking and obstacle 
avoidance control enhances the flexibility during formation 
movement.

The rest of this paper is organized as follows: In Section 2, the 
components of multi-USR formation and the experimental platform are 
introduced. Then, Section 3 describes the problems and introduces the 
proposed MOAC-AMPC strategy for multi-USRs. Simulation and exper
imental results are presented in Section 4. Then, the experimental result 
is discussed in Section 5. Finally, the conclusion is given in Section 6.

Fig. 1. The earth-robot coordinate system of USR.
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2. The overview of Multi-USR control system

In this section, the kinematics and dynamics models of USR are first 
presented. Further, the robot structure, sensor arrangement, multi- USR 
formation and its experimental platform are introduced.

2.1. The USR coordinate system

To accurately describe the mathematical model of multi-USR 
collaborative formation, the earth-robot coordinate system is shown in 
Fig. 1.

The pose of the USR in the inertial coordinate system can be 
expressed as: 

η= [ηT , ηR] = [x, y, z,ϕ, θ, ψ] (1) 

where, ηT = [x, y, z] is the position of the USR; ηR = [ϕ, θ,ψ ] is the Euler 
angle of the USR.

The velocity of the USR in the body coordinate system can be 
expressed as: 

v= [vT , vR] = [u, v,w, p, q, r] (2) 

where vT = [u, v,w] is the linear velocity of the USR translating along the 
X, Y, and Z axes of the body-frame, and vR = [p, q, r] is the angular ve
locity of the USR rotating around the X, Y, and Z axes of the body-frame.

Here, the pose and velocity of the USR are expressed as: 

η̇= J(η)v (3) 

where J(η) ∈ R6×6 is the transition matrix from the body coordinate 
system to the earth coordinate system.

In USR formation control, to facilitate control, the vector drive sys
tem adopted by the USR is X-shaped (the robot’s adjacent legs are set at 
an angle of 90-degree, see Fig. 1). In this X-shaped mode, the structure of 
the robot in the horizontal plane is symmetrical and its center of 
buoyancy and center of gravity nearly coincide, so the robot can better 
maintain its attitude, without rotation in the direction of pitch and roll, 
and its dynamic model can be simplified to: 

Mv̇+D(v)v = τ (4) 

where M stands for mass matrix of robot, m = 6.5 kg is the mass of the 
robot. 

M=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m 0

0 m

0 0

0 0

0 0

0 0

m 0

0 Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5) 

where Iz represents the inertia tensor matrix about the Z axis associated 
with the mechanical structure of the robot (Hou et al., 2024).

D(v) represents the matrix associated with hydrodynamic drag. 

D(v)=Dl + Dnl(v) (6) 

where Dl,Dnl(v) represent linear hydrodynamic damping force and 
second-order nonlinear hydrodynamic damping force, respectively. τ is 
for driving force.

2.2. The prototype of USRs

The design of the bionic USR is shown in Fig. 2. The total weight of 
the robot is 6.7 kg. The upper body mimics the shape of the tortoise’s 
hemispherical shell, which has an overall diameter of 30 cm (Li et al., 
2024; Xing et al., 2022; Li and Guo, 2024). The lower half contains a 
three-jointed leg-like structure that mimics the crawling of a turtle and a 
water-jet that mimics the propelling of a jellyfish. The multi-joint leg 
structure design of the robot in our team, on the one hand, meets the 
design of the robot amphibious movement, and on the other hand, it can 
freely adjust the angle of the water-jet stream to achieve the underwater 
vector drive. Please refer to Ref (Xing et al., 2021) for a more detailed 
description. The driven leg structure improves the flexibility and 
maneuverability of USRs.

Circuits, control modules, and various sensors, such as Inertial 
Measurement Units (IMUs), pressure sensors, UAV cameras, and speed 
sensors, are integrated into the robot’s upper hemispherical shell to 

Fig. 2. The main structure of USRs and the multiple USRs platform.
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sense information about the external environment. The UAV camera 
information processing relies on NVIDIA Jetson Nano module. For the 
binary images obtained after processing, morphological image pro
cessing is used to obtain a relatively ideal contour map, and template 
matching is performed. IMU adopts the LORD Sensing 3DM-GX5 series 
industrial inertial navigation system to predict the posture, motion 
speed and position of the robot through the posture and acceleration 
changes. The speed sensors mainly measure the propeller speed through 
the current feedback, which can be used to correct the measurement of 
robot speed by IMU. Pressure sensors are used to sense underwater 
depth. IMU and speed sensors are used to verify and optimize the 
camera’s measurement results.

The multi-USR platform shown in Fig. 2 consists of multiple USRs, an 

Unmanned Aerial Vehicle (UAV), and a computer control system. The 
camera attached to the UAV provides location information to the USRs 
and obstacles. The Kalman filter is used to predict the position and ve
locity of the robot. The principle is shown in Appendix A. In shallow sea 
environments, the combination of UAV and underwater robots can 
effectively provide the relative position relationship between robots and 
the position of obstacles, which is conducive to formation and collabo
rative obstacle avoidance.

The computer control system is the brain of robots and is responsible 
for processing perceptual information and task requirements to produce 
appropriate instructions. The underwater acoustic communication 
module is used for communication in ocean environments. In pool ex
periments, to reduce the communication error and focus on the research 

Fig. 3. The communication structure of multiple USRs platform.

Fig. 4. The planning and control of USR formation with X-shaped (see Fig. 1) vector drive system.
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of formation obstacle avoidance in this paper, the communication 
structure is mainly realized through optical fiber module, local area 
network and ROS communication module, as shown in Fig. 3. The USRs 
and the UAV communicate via the ROS multi-robot communication 
module. In the case of short-distance optical fiber transmission, there is 
almost no communication failure. The optical fiber connections ensure 
reliable communication. The planning and control based on task 
decomposition is shown in Fig. 4.

2.3. The multiple USRs formation with virtual structure method

The virtual structure method uses a reference point as a leader, from 
which the desired track points for all formation members are deter
mined. In this paper, this method is mainly used to control the global 
position information of the robots, so the USRs still have greater freedom 

in other aspects.
The virtual leader’s track points are provided by a predefined 

reference track. The trajectory points of formation members are ob
tained from formation shape parameters. In Fig. 5, OW is the origin of the 
world coordinate system. PWi = (XWi, YWi) represents the position of 
robot i in the earth coordinate system, assuming that the robot is labeled 
1, 2, …, n. PVS (x0, y0) represents the position of the formation center in 
the earth coordinate system. DVS represents the side length of the virtual 
triangle structure. θ is the forward heading angle of the formation under 
the virtual structure. YF represents the moving direction of the robot and 
is also the positive direction of the Y-axis of the formation reference 
frame. XF is the positive X-axis of the formation reference frame. The 
robot vectors in the formation reference coordinate system are PFi = (XFi, 
YFi) i = 1 … n. The coordinate transformations from the vector PF to PW 
require rotation and translation. The rotation matrix R and the trans
lation matrix T are as follows. The robot has a strong resilience to keep 
from turning, so the rotation is in the horizontal plane. 

R=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

(7) 

T=
(
x0, y0, z0

)
(8) 

The steps of the virtual structure method are as follows: Firstly, the 
position of each robot member in the formation is obtained, and the 
coordinates of the virtual structure point in the formation are calculated. 
Secondly, the coordinates of virtual structure points expected at the next 
time are updated according to the expected speed and step size. Finally, 
the control algorithm is invoked to control the speed and position of the 
robot to make the robot track the desired trajectory.

3. The moving obstacles avoiding and formation control 
strategy

The virtual structure method is used to plan the trajectory of the 
USRs formation globally. Then, the trajectory tracking and obstacle 
avoidance of the robots are realized by the improved MPC trajectory 
tracking algorithm and the moving obstacle avoidance and constraint 
strategy locally. In resource exploration and maintenance work in 
shallow sea, the overall multi-USR formation control system is shown in 

Fig. 5. The schematic diagram of formation control strategy under the virtual 
structure method.

Fig. 6. The diagram of the Multiple USRs control system.
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Fig. 6. The dotted yellow lines represent the planned trajectories. The 
advantages of this design of multi-USR formation control system are: 
First, the inflexible structure of virtual structure method in the obstacle 
avoidance process is reduced. Otherwise, when one robot avoids ob
stacles, other robots will deviate from their own trajectory. In this way, 
other formation members are not affected by obstacle avoidance 

Fig. 7. The comparison of the AMPC and MPC algorithms. (a) The motion trajectory (b) Tracking errors in the X direction (c) Tracking errors in the Y direction.

Table 1 
The Mean Square Errors (MSEs) for the AMPC and the MPC trajectory.

Direction MSEs of AMPC (cm) MSEs of MPC (cm) Reduction of MSEs

X 2.66*10− 3 3.03*10− 3 12.2 %
Y 1.85 2.65 30.2 %

Fig. 8. The schematic diagram of the VO method. (a) The velocity increment 
calculated from the velocity of the USR relative to the obstacle. (b) The change 
in the absolute velocity of the USR.

Fig. 9. The velocity constraint.
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members, but along the globally planned trajectory. This may reduce the 
robots’ excess affected obstacle avoidance movements and fluctuations, 
which can reduce energy consumption.

Then, most underwater obstacles are not stationary and their motion 
state is difficult to predict, local obstacle avoidance based on velocity 
obstacle method enhances the flexibility of obstacle avoidance. In 
addition, the trajectory of global path planning made by the virtual 
structure method is time-dependent and has the alignment of formation. 
The formation can be formed when every robot tracked the trajectory.

In the following, the MPC trajectory tracking algorithm is improved, 
aiming to speed up the tracking process and reduce the time required to 
track to the trajectory. The obstacle avoidance constraint matrix is 
designed based on the VO method to avoid obstacles while tracking the 
trajectory.

3.1. The improved formation trajectory tracking method

To enhance the robustness and efficiency of the MPC method, an 
adaptive weight matrix adjustment method based on output error is 
designed. Suppose that the system state model of the i-th USR in the 
formation tracking problem obtained from Equations (4)–(6) is as 
follows: 

ẋi =

[ J(η)vi

M− 1
i

(
τi − Dlvi − Dnl|vi|

2
)

]

= f(xi, τi) (9) 

For the i-th USR, xi = col(ηi, vi) ∈ R6 is the state vector, ηi is the 
position vector, vi is the velocity vector, and τi ∈ R3 is the control input. 
The reference trajectory xref ,k+1 is used to create the new state ξk+1, as 
shown in Equation (10). 

ξk+1 = Aξk + BΔτk
ηk = Cξk
ξk+1 = xk+1 − xref ,k+1

(10) 

The discrete matrices A and B are described below: 

A=

[
I + TAt TBt
0m×n Im

]

,B=

[
TBt
Im

]

,C= I2×2 (11) 

where the linearization parameter is 

At =

[
02×2 I2
02×2 M− 1( − Dl − 2Dnl|v|)

]

,Bt =

[
02×2
M− 1

]

(12) 

To establish a standard quadratic problem, Hessian matrix Hk and 
gradient matrix Gk are designed. Λ and ε are added to the secondary 
optimization to prevent the occurrence of no solution. 

min Jk =
[
ΔτT

k , ε
]
Hk
[
ΔτT

k , ε
]T

+Gk
[
ΔτT

k , ε
]T

s.t. Δτmin ≤ Δτk ≤ Δτmax,AuneqΔτk ≤ buneq
(13) 

H=

[
ΘTQΘ + R 0

0 Λ

]

G=2(Φξ)TQΘ (14) 

Φ=

⎡

⎢
⎢
⎣

CA
CA2

⋮
CAN

⎤

⎥
⎥
⎦,Θ=

⎡

⎢
⎢
⎢
⎢
⎣

CB
CAB
⋮

C

(
∑N− 1

i=1
Ai

)

B

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15) 

The coefficient matrix Auneq of the control increment in the control 
constraint is as follows: 

Auneq =

[
Λdown,Nc ⊗ INu 0Nu⋅Nc,1
− Λdown,Nc ⊗ INu 0Nu⋅Nc,1

]

(16) 

where Λdown,Nc buneq is as follows: 

Λdown,Nc =

⎡

⎣
1
⋮ ⋱
1 … 1

⎤

⎦

Nc

(17) 

buneq =

[
INc,1 ⊗ τmax − INc,1 ⊗ τk
− INc,1 ⊗ τmin + INc,1 ⊗ τk

]

(18) 

In a multivariable system, the effects of parameters on different vari
ables are coupled, which increases the parameter tuning complexity of 
the MPC. To solve this problem, an adaptive weight matrix adjustment 
method based on tracking error is designed. The reference trajectory is: 

Yref ,k=
[
ηref ,k,…, ηref ,k+Np

]T (19) 

The output error of the system satisfies: 

Errk =

∑Np

j=1

[
Yk+j − Yref,k+j

]

Np
(20) 

The weight matrix is designed as follows: 

Qada,k =KadaErrk (21) 

where Kada is a constant parameter. The parameter Kada of the weight 
matrix needs to obtain a suitable value, a small parameter value will lead 
to poor tracking effect, and a large value will lead to unstable motion. In 
this paper, Kada = 10. Standardized Qnormal,k is used to balance the 
control effects of various state variables. 

Qnormal,k =
1

1 + e− Qada,k+2.5 (22) 

The comparison of the AMPC and MPC algorithms is shown in Fig. 7. 
The tracking errors in the X direction are very small, and there is no 
obvious difference between the two algorithms. The tracking errors of 
AMPC in the Y direction are smaller than that of MPC. Compared with 
MPC, AMPC can achieve similar effect for trajectory tracking with small 

Fig. 10. The comparison of RS-AMPC and MOAC-AMPC algorithms. (a) The 
obstacle avoidance trajectory. (b) The distances between robots and obstacles.
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initial error. For the track tracking with large initial error, AMPC can 
track the target track faster and reduce the tracking time through 
parameter adaptive adjustment. In the weight matrix, the weights in the 
X direction and the Y direction are equal. The AMPC adaptively adjusts 
the weight matrix according to the errors in the Y direction to reduce the 
errors.

The percentage reduction of the Mean Square Errors (MSEs) for the 
AMPC compared with MPC trajectory in X and Y directions are 12.2 % 
and 30.2 % respectively, shown in Table 1. Noted that, the control input 
and control increment are within the constraint range.

3.2. The Moving Obstacle Avoidance Constraint design

The Moving Obstacle Avoidance Constraint (MOAC) was designed 
based on the Velocity Obstacle (VO) method. In Fig. 8, robs represents the 
radius of the obstacle, and rrob represents the radius of the robot. rVO 
represents the expanded radius of the obstacle, thus forming the area VO 
where a collision may occur. vt represents the current velocity of the 

robot. vt+1 represents the speed of the robot to avoid obstacles at t + 1 
moment. vobs represents the velocity of obstacles, and u represents the 
velocity increment. n represents the normal vector of the nearest 
boundary to escape VO.

Then, the nearest boundary is selected to calculate the normal vector 
n and the velocity increment u. Finally, the velocity of the USR is 
calculated. The green arrow in Fig. 9 shows the robot’s velocity relative 
to the obstacle, falling on the right half of the VO area. The starting point 
of the velocity increment escaping the VO boundary (orange arrow in 
Fig. 9) is the endpoint of the robot’s velocity relative to the obstacle. The 
endpoint is the projection of the robot’s velocity relative to the obstacle 
to the VO boundary. The solution vt+1 for the absolute velocity of the 
robot is shown in the purple line in Fig. 9.

Assume that the velocity of the obstacle at the predicted horizon is a 
constant. The velocity constraint inequality can be described as: 

(vk+1 − (vk + δvk))n<0, k=1…Np (23) 

where δvk represents the increment in velocity. Here, the dynamic 
constraint transforms to NVO,k(Vk+1 − Vk − δVk) < 0.

To obtain the velocity vector in the state vector, a normal vector 
matrix containing zero vector is designed. 

NVO,k =

⎡

⎢
⎢
⎣

nz1 01×4 … 01×4
01×4 nz2 ⋱ ⋮

⋮ ⋱ ⋱ 01×4
01×4 … 01×4 nzNp

⎤

⎥
⎥
⎦ (24) 

where nzi = [01×2 ni], and NVO,kVk+1 can be obtained from the prop
erties of normal vector matrices. 

Fig. 11. The simulation verification of the robot avoiding moving obstacles. (a) Three-dimensional diagram. (b) XY plane diagram at t1. (c) XY plane diagram at t2.

Table 2 
The robots and obstacle information.

Object Radius (m) Start point (m) End Point (m) Velocity (m/s)

Robot-1 0.30 (-2.00, 5.00) (6.00, 2.70) time varying
Robot-2 0.30 (-2.00, 3.00) (5.00, 4.70) time varying
Robot-3 0.30 (-1.50, 2.00) (5.00, 0.70) time varying
Obstacle-1 0.30 (4.00, 2.00) (-0.80, 2.00) (-0.80, 0.00)
Obstacle-2 0.30 (6.00, 5.00) (1.20, 5.00) (-0.80, 0.00)
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NVO,kVk+1 =NVO,kηk+1 (25) 

where ηk+1 are calculated by controlling increment τk, which provides a 
transformation from velocity constraint to control increment constraint. 

ηk+1 =Φηk + ΘΔτk (26) 

Since the control increment is the target quantity to be solved, the 
output state ηk+1 at k + 1 is unknown. It is important to note that the 
final predicted output state ηk is not computed by Δτk− 1, but by the 
unknown vector Δτk. Therefore, the output state η0 at the current time is 
needed. 

η0,k =
[
xT

k 01×4(Np− 1)
]T (27) 

The velocity constraint inequality is expanded in the prediction time 
domain, and the inequality including control increment is obtained. 

NVO,k(Φkηk + ΘkΔUk) <

NVO,k
( (
Ilast(Φkηk + ΘkΔUk) + η0,k

)
+ δVk

) (28) 

To make sure it corresponds to the dimensions of NVO,k, δVk+1 is 
designed to be 

δVk =
[
01×2 δv1

T … 01×2 δvNp
T ] (29) 

Fig. 12. The comprehensive experiment of moving obstacle avoidance in formation. (a) t = 4s. (b) t = 12s. (c) t = 16s. (d) t = 20s. (e) t = 24s with the collision 
avoidance of the formation members. (e) t = 24s without the collision avoidance of the formation members.
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The matrix coefficients of control increment are extracted and the 
obstacle avoidance control increment constraint is obtained. 

AVO =NVO,k(Θk − IlastΘk) (30) 

Considering the effect of the relaxation factor, it is necessary to add 
the zero vector to the coefficient matrix. 

AVO =
[
NVO,k(Θk − IlastΘk) 0Np×1

]
(31) 

bVO is calculated as: 

bVO =NVO,k
(
Ilast,kΦkηk − Φkηk + ηk,0 + δVk

)
(32) 

The final form of an optimization problem that considers all obsta
cles can be solved with a linear constrained objective function solver, as 
shown in Equation (33). 

min Jk =
[
ΔτT

k , ε
]
Hk
[
ΔτT

k , ε
]T

+Gk
[
ΔτT

k , ε
]T

s.t. Δτmin ≤ Δτk ≤ Δτmax
⎡

⎢
⎢
⎢
⎣

Auneq

AVO,1

⋮
AVO,Nobs

⎤

⎥
⎥
⎥
⎦

Δτk <

⎡

⎢
⎢
⎢
⎣

buneq

bVO,1

⋮
bVO,Nobs

⎤

⎥
⎥
⎥
⎦

(33) 

Optimization problems can be solved by quadratic objective function 
solvers with linear constraints. It can be seen that the obstacle avoidance 

Fig. 13. The comprehensive experiment of moving obstacle avoidance in formation. (a) t = 1s. (b) t = 2s. (c) t = 3s.

Fig. 14. The moving obstacle avoidance experiment of a single robot.

Table 3 
Moving obstacles and robot information.

The start point of 
obstacle (cm)

The end point of 
obstacle (cm)

The start point of 
robot (cm)

The end point of 
robot (cm)

(145.0, 104.0) (57.0, 110.0) (40.0, 100.0) (250.0, 100.0)
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strategy is suitable for robot systems that can transform velocity 
constraint into control quantity constraint through dynamic model. And 
the obstacle avoidance strategy should be used as a constraint term of 
MPC or quadratic optimization problems.

Here, two obstacle avoidance strategies are designed based on AMPC 
for comparison. The first is as shown in Fig. 9 which combined with 
MOAC-AMPC to obtain obstacle avoidance velocity and obstacle 
avoidance displacement. The other is to randomly select the obstacle 
avoidance velocity that does not fall within the VO obstacle avoidance 
boundary, and this strategy is labeled as RS-AMPC. To illustrate the 
effectiveness of the obstacle avoidance algorithm more clearly in the 
figure, a single robot is selected for obstacle avoidance experiments. The 
radius of the robot is 30.0 cm, the starting point is (0.0, 1.2) m, the end 
point is (0.0, − 1.2) m, and the velocity is − 0.1 m/s. The radius of the 
obstacle is 10.0 cm, the starting point is (0.2, − 1.0) m, the end point is 
(0.2, 1.4) m, and the velocity is 0.1 m/s.

It can be seen from Fig. 10 that the minimum obstacle avoidance 
distances of RS-AMPC and MOAC-AMPC are 0.44 m and 0.40 m, 
respectively. Therefore, in terms of performance, the unnecessary 
moving distance of the robot is reduced in the obstacle avoidance pro
cess, and the reduction is 9 %. MOAC-AMPC (solid blue line) has a better 
obstacle avoidance effect, and the robot is closer to the expected tra
jectory while staying away from the obstacle (solid black line). Both of 
them are greater than the sum of USR and the obstacle radius (0.40 m). 
In addition, the calculation time consumption of the combination of the 

improved obstacle avoidance strategy and the AMPC is almost the same 
as that before the improvement.

4. Simulations and experiments

Two simulation scenarios and two experimental scenarios were set 
up to verify the proposed MOAC-AMPC strategy. The motion of USRs in 
the first simulation scenario showed the obstacle avoidance effect of the 
proposed strategy by avoiding moving obstacles without replanning the 
trajectory. The second simulation scenario verified the strategy on 
avoiding both obstacles and robots in formation. The first experimental 
scenario verified the feasibility of avoiding obstacles. The second 
experimental scenario verified the multi-USR formation trajectory 
tracking in the presence of moving obstacles under the proposed 
strategy.

4.1. Simulation results

Firstly, the proposed obstacle avoidance strategy is verified based on 
the dynamic model mentioned earlier. The obstacle avoidance effect is 
shown in Fig. 11. The dashed line represents the desired trajectory of the 
robot, and the solid line represents the actual trajectory. Different robot 
trajectories are distinguished by different trajectory colors. There are 
two obstacles moving in the negative direction of the X axis. The 
obstacle avoidance threshold of the VO method is set as 1.2 m. As the 
radius of the robot is 0.3m and the radius of the obstacle is set as 0.9m. In 
the virtual structure method, the robot position can be transformed into 
the relative coordinate representation, and the center of the virtual 
structure is the origin. Orange represents robot 1 and the relative co
ordinates are (0.0, 0.0, 0.0) m. Blue represents robot 2 with relative 
coordinates of (− 1.0, 1.5, − 1.0) m. Purple represents robot 3, whose 
relative coordinates are (− 1.0, − 1.5, − 1.0) m. The robot follows the 
trajectory while avoiding obstacles. Fig. 11(b) and (c) show the robot’s 
position state at different moments, which verifies the timeliness 
requirement of the algorithm.

Next, the collision avoidance ability of the robot formation members 
was verified. On the basis of verifying the computational capability of 
the algorithm in the three-dimensional space in Fig. 11, obstacle 
avoidance is returned to the two-dimensional plane to analyze the 
obstacle avoidance process more clearly and intuitively. The experiment 
scenario is that three robots start from any point and track the desired 
trajectory while avoiding obstacles and the robot formation members. 
Robot and obstacle information are shown in Table 2. The effect of 
cooperative obstacle avoidance of robot formation is shown in Fig. 12. 
Similarly, the dotted line represents the desired trajectory of each robot, 
and the solid line represents the actual trajectory. The orange circle 
represents Robot-1, and the orange line represents its trajectory. Blue 
and purple represent Robot-2 and Robot-3, respectively. Obstacles are 
represented by red circles. The straight segments in the circles represent 
the velocity direction of the robots or obstacles at this moment.

The reference trajectory of the robot center is described as 
{

px = 0.1kT
py = 3 + sin(0.1kT) , k=1…1500 (34) 

The solid blue line in Fig. 12(a) is curved, representing Robot-2 (blue) 
dodging Robot-1 (orange). Robot-3 (purple) in Fig. 12(b) is avoiding 
Obstacle-1 in the bottom half. Robot 2 in Fig. 12(c) is dodging Obstacle-2 
in the top half. In Fig. 12(d), the three robots return to their respective 
expected trajectories, and in Fig. 12(e), the robots arrive at the end. The 
comparison between Fig. 12(f) and (e) aims to illustrate the obstacle 
avoidance function between the members of the multi-robot formation. 
In Fig. 12(e), the trajectory of the blue robot with the collision avoidance 
strategy of formation members is bent at the initial stage. That of the 
blue robot without collision avoidance strategy of formation members is 
not bent in Fig. 12(f). The effectiveness of the collision avoidance 

Fig. 15. The distance between the robot and the obstacle in the obstacle 
avoidance experiment.

Fig. 16. The control inputs of the robot in the X and Y axis.
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strategy of formation members is proved in simulations.
To further explain the collision avoidance process between robots 

and the collision avoidance principle, the collision avoidance process of 
1–3 s is shown in Fig. 13. It can be seen that when there is a possible 

collision (Fig. 13(a)), the two robots will adjust their local trajectories 
respectively, as shown in Fig. 13(b). When there is no collision risk, the 
robot returns to the global trajectory tracking path planned by the vir
tual structure method, as shown in Fig. 13(c). However, there are some 
idealizations in the simulation, such as the lack of ocean current 
disturbance and random environmental disturbance(environmental 
noise). Therefore, we further carried out the pool experiments.

4.2. Experimental results

To verify the ability of the VO method in avoiding moving obstacles, 
the trajectory tracking and obstacle avoidance experiments of a single 
robot were carried out. The influence range (obstacle radius) of the 
obstacle is 15 cm which can ensure that the collision between the robot 
and the obstacle is avoided.

The blue pentagram and the blue diamond in Fig. 14 represent the 
starting point and the ending point, respectively, whose positions are 
shown in Table 3. The obstacle track is a straight yellow line, and the 
obstacle avoidance threshold is 0.7 m, that is, the obstacle avoidance 
strategy is started when the distance between the robot and the obstacle 
is 0.7 m. The robot starts tracking the desired trajectory from Fig. 14(a). 
When approaching the obstacle, the robot begins to avoid the obstacle, 
as shown in Fig. 14(b). After successfully avoiding the obstacle, the 
robot continues to track the desired trajectory, as shown in Fig. 14(c). In 
Fig. 14(d), the robot reaches the end of the desired trajectory. The effect 
of the proposed algorithm satisfies both the control input constraint and 
moving obstacle avoidance constraint. Fig. 15 shows the distance be
tween the robot and the obstacle. The 49.4 cm marked point on the 
figure is the minimum distance, which is larger than the addition of 
robot radius (30.0 cm) and obstacle radius (15.0 cm). That is, the min
imum distance between the robot and the obstacle is 4.4 cm. To avoid 
the instability during the propeller suddenly starting under water and 
the performance instability of the thruster at low speed or high speed, 

Fig. 17. The comprehensive experiment of collaborative formation and obstacle avoidance.

Table 4 
The obstacles and robot information.

Point Robot-1 (yellow) (cm) Robot-2 (Red) (cm) Obstacle (cm)

Start point (19.0, 169.0) (29.0, 65.0) (215.0, 114.0)
End point (297.0, 165.0) (281.0, 83.0) (95.0, 122.0)

Fig. 18. The distance between the robot and the obstacle in the formation 
obstacle avoidance experiment.
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the output thrust base value of the propeller is set as 1.7 N. The robot is 
stationary under water when all four propellers reach base value. Then, 
by adjusting the input control quantity of each propeller based on the 
reference value, the movement of the robot is realized. Fig. 16 shows the 
robot’s X and Y axis control inputs. The solid green line represents the 
base value of 1.7 N, and the control input constraint is 0.4 N. The al
gorithm satisfy the control constraint.

Then, the formation control and obstacle avoidance effects were 
verified. In Fig. 17, the start and the end points of the yellow robot are 
represented by the blue pentagram and diamond, respectively, whose 
positions are shown in Table 4. The starting and end points of the red 
robot are green pentagram and green diamond, respectively. The 
obstacle track is the yellow line. To make the obstacle affect two robots 
at the same time, the obstacle radius is set to 0.15 m, and the obstacle 

Fig. 19. The control quantity and increment of the USR in the formation obstacle avoidance experiment.
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avoidance threshold is set to 0.90 m. When the motion begins, the robot 
tracks the desired trajectory, as shown in Fig. 17(a). When encountering 
obstacles, the robot formation avoids obstacles, as shown in Fig. 17(b). 
In Fig. 17(c), the robot avoids an obstacle chasing from behind the robot 
after returning to the desired trajectory. In Fig. 17(d), the obstacle leaves 
the obstacle avoidance range of the robot, and the robots retrack the 
expected trajectory to reach the end point of the expected trajectory. In 
the experiment, the robots maintained formation and avoided moving 
obstacles twice before continuing to track the desired trajectory. As a 
result, the tracking and obstacle avoidance of the robots are realized in 
the experiment. However, compared with the simulation results, the 
fluctuation in the experiment is larger, which is due to the small space in 
the pool experiment and the reflection of the water flow fluctuation 
through the wall caused by the robot movement, forming a strong 
interference flow field environment.

Fig. 18 shows the distance between robots and the obstacle in the 
comprehensive formation experiment. The minimum distances between 
the two robots and the obstacle are 69.6 cm and 73.5 cm, respectively. 
Both are larger than the radius sum 45.0 cm of the robot and the 
obstacle.

5. Discussion

5.1. The control quantity and increment

In simulation, the variation of the control quantity and increment of 
each robot is shown in Fig. 19. It can be seen that the y-direction control 
of each robot is between − 0.7N~0.5N, the x-direction control is be
tween 0.1N~1.3N, and the control increment is between − 0.3N~0.3N. 
The function of adaptive linear model predictive control for the pro
cessing of control quantity and increment constraints is verified.

5.2. Analysis of pool experiments

In pool experiment environment, the red line in Fig. 20 indicates that 
the trajectory of USR1 is located in the positive direction of the y-axis of 
the obstacle, where the solid line is the actual trajectory and the dashed 
line represents the desired trajectory without considering obstacle 
avoidance. The blue line indicates that the USR2 trajectory is located in 
the negative y-axis direction of the obstacle, where the solid line rep
resents the actual trajectory and the dashed line represents the desired 
trajectory without obstacle avoidance. The solid black line in the middle 

represents the obstacle trajectory. The green dotted line connecting the 
two robots represents the actual formation at the same time, and it can 
be seen that the proposed algorithm can meet the expected trajectory of 
the formation and recover the formation after obstacle avoidance.

The current disturbances were not added in the simulation, to clearly 
reflect the performance of the strategy. However, in the experiment, due 
to the robot movement and the wall reflection of the experimental pool 
on the water flow, large random flows are formed, which are large 
disturbances for the robot. The robot deals with underwater current and 
noise disturbance in real time by AMPC and error feedback caused by 
disturbance.

Then, the obstacle rate change is analyzed, which varies in the range 
of about 6 cm/s~16 cm/s, and the expected rate of the robot is 10 cm/s. 
In order to allow the obstacle to affect the two robots at the same time, 
the obstacle avoidance threshold is 0.9m, and the obstacle radius is set to 
15 cm, which is also the reason for the large fluctuation of the formation 
trajectory error, but the overall effect is ideal.

In addition, the expected time of formation trajectory tracking is 
analyzed, and the expected time without obstacle avoidance behavior is 
about 28s, and the actual time is 32.66s, and the obstacle avoidance time 
only increases by 16.64 %, which also verifies the performance of the 
proposed obstacle avoidance strategy.

5.3. Discussion about limitation

It can be seen that in the experiment, under the condition of more 
disturbance and uncertainty than in the simulation, the underwater 
robot formation obstacle avoidance can be realized. However, the mo
tion control stability of the underwater robot in the experiment is rela
tively poor than in the simulation. Therefore, if robots are actually used 
in the shallow sea environment, the anti-interference ability of our al
gorithm needs to be enhanced. This research mainly focuses on the 
successful formation obstacle avoidance of robots. The stronger anti- 
interference ability of robots and the fault-tolerant ability of commu
nication are also problems that we need to focus on in the future.

The pool experimental environment has limited width and is less 
complex than real underwater exploration environment scenarios. The 
water flow disturbance in the pool is mostly a small amplitude random 
disturbance, which is formed by the changes of water flow and reflection 
of pool wall during the robot movement, and lacks the larger amplitude 
ocean current disturbance in the real application environment. In pool 
experiments, fibre-based communication is chosen to reduce commu
nication delays or failures. In the actual environment, underwater 
acoustic communication will increase the communication cost and er
rors, which needs further research. In addition, in experiments, the 
upper-level decision-making are processed through the upper computer. 
In the actual environment, the processor needs to be concentrated on the 
robot, which requires more computing resources and energy. Therefore, 
there are some limitations in the pool experiment, which can be used as 
the preliminary verification of the improved algorithm.

6. Conclusion

In this paper, a moving obstacle avoidance constrained adaptive 
model predictive controller (MOAC-AMPC) is designed. Firstly, the hy
drodynamic model is linearized. Then, an adaptive weight matrix based 
on tracking error is designed to reduce the tedious adjustment of the 
weight matrix. In addition, the adaptive weight matrix can optimize the 
tracking by reduce the tracking time. Then, to avoid multiple moving 
obstacles during tracking, the VO method is used to design the velocity 
constraint, so that USR can track the target trajectory without replan
ning the new trajectory. At the same time, a new constraint trans
formation method is proposed, which transforms the velocity constraint 
into the control increment constraint. Finally, the effectiveness of the 
algorithm is verified by numerical simulation and experiments in pool 
environment. Simulation and experimental results show that USR can 

Fig. 20. Obstacle avoidance of formation members and obstacle trajec
tory diagram.
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effectively avoid multiple moving obstacles and avoid other formation 
members in formation in relatively low disturbance scenarios such as 
pool experiments. In the future, we will further study relevant adaptive 
control strategies and expand the application range in more realistic 
environments, such as considering more complex disturbance environ
ments, obstacle environments, and solving communication delays and 
failures, to illustrate the reliability of our method and make further 
improvements.
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Appendices A. Velocity Estimation Based on Kalman Filter

To enhance the recognition accuracy of the velocity of the USR and the obstacle, considering the interference factors such as delay, the Kalman 
filter method was used to obtain the velocity of USR in the nonlinear state. The state transition and the observation equations of the Kalman filter can 
be expressed as: 
{
xk = f(xk− 1) + εk
zk = h(xk) + δk

(A.1) 

where xk is the state quantity, zk is the observational measurement, εk is the process noise, and δk is the observation noise.
The prediction of the state process first deduces the state transition equation according to the dynamic equation of the USR model, satisfy: 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x̂k

ŷk

v̂k

θ̂k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xk− 1 + vk− 1 cos θk− 1Δt

yk− 1 + vk− 1 sin θk− 1Δt

vk− 1

θk− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A.2) 

where ̂xk , ŷk , v̂k, θ̂k in the state vector represent the predicted values of the horizontal and vertical position, velocity, and heading angle of the robot in 
the earth coordinate system, respectively. The covariance matrix for state estimation is P−

k = Fk− 1pk− 1FT
k− 1 + Q.P−

k . P−
k is iteratively obtained by setting 

the initial covariance matrix. Fk− 1 is a Jacobian matrix resulting from the linearization of x by a nonlinear system.
The adjustment update process can be expressed as: 

Gk =P−
k HT

k
(
HkP−

k HT
k + R

)− 1 (A.3) 

And then the optimal value of the pose state can be estimated, satisfy ̂xk = x̂k + Gk(zk − h( x̂k )). Where zk = [xk, yk, θk]
T. Hk is the partial derivative 

of h(x).
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